1. PHD PROJECT DESCRIPTION (4000 characters max., including the aims and work plan)
Project title:

Harnessing Active Learning Strategies for Simulating Photochemical Reactions

1.1. Project Goals:

Understanding the excited-states (nonadiabatic) dynamics of a photoactivated molecule is an active
area of research because electronic transitions play a vital role in photosynthesis, vision processes, solar
cells, photodynamic cancer therapy, and photocatalysis. Nonadiabatic molecular dynamics (NAMD)
simulations have become one of the most powerful tools for modeling excited electronic states relaxation
mechanisms in photo-active molecular systems. However, on-the-fly NAMD simulations are
computationally very expensive. It requires single-point quantum chemistry (QC) calculations for hundreds
of thousands of different molecular geometries during its propagation. Recently, the emergence of
Machine Learning (ML) approaches in quantum chemistry has created a way to advance the state of the
art. A well-trained ML model can predict the energies and forces at a negligible cost. The integration of ML
models in nonadiabatic molecular dynamics can dramatically speed up the simulation and increase the
statistics by producing a large number of trajectories.

This project aims to build a sustainable and robust framework of machine learning assisted excited
states molecular dynamics simulation. This proposed protocol will be applied to study the photo-relaxation
pathways of biologically important canonical and modified nucleobases.

1.2. Outline:

The project exploits the following distinct scientific methodologies:

(a) Exploring the reaction pathways of the photo-excited molecule of interest by static ab initio quantum
chemistry calculations.

(b) Simulating the photo-absorption spectra by using the nuclear ensemble approach.

(c) Abinitio QC-NAMD simulations (for verification) using the Trajectory Surface Hopping methodology.

(d) Active Learning based ML-NAMD simulations.

The project will use and also contribute to developing the following software:

* Newton-X - an open-source, free software for the NAMD simulations. It is interfaced with several
quantum chemistry packages (Gaussian16, ORCA, Turbomole, OpenMolCAS, Columbus, PySCF, PyOQP
etc.) for electronic structure calculations.

* MLlatom - an open-source, free program for developing machine learning models for molecular
system.



1.3.  Work Plan:

The project will employ an active learning approach to train ML potentials. Active learning uses a
similarity measure to determine the uncertainty of predicted molecular properties during trajectory
propagation. The query-by-committee strategy will be adapted to assess the model uncertainty, quantified
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on the atom j predicted by the ML potential ¢, and F, is the average force on the atom j over the ¢. o
provides a measure of uncertainty in the model's predictions, reflecting the variance in atomic force
estimations across different models. Higher values indicate regions where the model is less confident,
while lower values suggest greater reliability in the predictions.

The active learning workflow starts with training an initial quantum chemistry dataset to
construct independently trained [y initial ML potentials. The uncertainty measurement identifies the bad
predictions, and the uncertain structures are recomputed with ab initio calculations and added to retrain
the ML models. This procedure continues until the error remains approximately the same between two
consecutive iterations. As a result of this active learning cycle, the training set is progressively enlarged,
enabling the development of robust ML potential capable of predicting atomic energies and forces within
chemical accuracy.

We will employ the recently developed higher-order equivariant message passing neural
network, MACE, for constructing the ML models due to its outstanding success with low training data.
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1.5. Required initial knowledge and skills of the PhD candidate:

Good working knowledge of computational chemistry methods for the description of excited states,
experience of machine learning methods in chemistry preferred, Python programming skills, fluent
English, high motivation, and ability of the teamwork.

1.6. Expected development of the PhD candidate’s knowledge and skills:

This PhD project will offer the candidate a unique opportunity to gain interdisciplinary expertise at
the intersection of theoretical and computational chemistry, scientific programming and data science
for a versatile career in both academia and industry.

The candidate will:

* Acquire deep scientific knowledge of excited-state phenomena, nonadiabatic molecular
dynamics, and photochemical reaction mechanisms, building a strong foundation in theoretical
and quantum chemistry.

* Develop advanced computational skills, including high-level Python programming, data
handling, and software development relevant to modern chemical simulations.

* Master machine learning techniques, including supervised and unsupervised learning, focusing
on practical applications such as model training, feature engineering, and performance
evaluation in chemical systems.

* Gain experience in active learning strategies, enabling efficient sampling and model
optimization, and deepening their understanding of adaptive data-driven research
methodologies.

In addition to technical skills, the candidate will be encouraged to:

* Strengthen communication and collaboration skills through regular presentations at group
meetings, workshops, and conferences.

* Hone scientific writing abilities by contributing to high-quality publications in peer-reviewed
journals.

* Build project management and critical thinking capabilities, allowing them to independently
design, implement, and assess complex computational workflows.

Overall, the project is designed to foster a well-rounded researcher equipped with cutting-edge
knowledge and transferable skills that are highly valued in research institutions, tech-driven industries,
and interdisciplinary innovation sectors.



