1. PHD PROJECT DESCRIPTION
Project title:

Geometric and dynamical analysis of flows in selected fluid mechanics models
Project goals

® Understand local approximation of contour dynamics for 2D Euler and generalized
surface quasi-geostrophic equation (gSQG)

e Determine class of finite-time singularities developed by a geometric flow
approximating the contour dynamics corresponding to gSQG.

e Establish the existence and describe the qualitative properties of periodic solutions for
the forced gSQG equations.

Outline

The basis of our considerations is the generalized surface quasi geostrophic equation (gSQG)

386 +uVeO =0u=-V 'L(—A)_HGG, where 0 €[0,1) is a parameter. In particular for a = 0, the
equation becomes the vorticity formulation of the two dimensional incompressible Euler
equation, which describes the evolution of inviscid, incompressible fluids with constant
density, where the motion of fluid particles is driven by internal pressure [6], [7]. Recent
studies for the gSQG equation have focused on patch-type solutions—those that remain
characteristic functions of bounded regions in the Cartesian plane for all times. Particular
examples are well-known V-states: time-periodic convex bounded regions that rotate around
their center of mass with a constant angular velocity.

We know that the evolution of the boundary of general patches is governed by a non-local
flow, called contour dynamic equation. The nonlocality introduces significant analytical
challenges, as the velocity field evolving the boundary, depends on the global geometry of the
patch. Understanding whether singularities can form in finite time, as well as describing the
long-term behavior and possible self-similar structures, are central questions in this context.

In the case of the 2D Euler equation, a geometric flow of planar curves was proposed by
Goldstein and Petrich as a formal approximation of the contour dynamics equation, providing
an alternative framework for the local analysis of patch evolution. An important property is
the fact that corresponding flow of scalar curvatures satisfies focusing modified Korteweg-de
Vries equation. Recently, it was shown that an arbitrary double spiral is a finite-time
singularity developed by a self-similar solution of the geometric flow [3], [5]. Moreover, the
curvatures corresponding to this self-similar solution tends to a distribution in the form of
linear combination of Dirac delta and Cauchy principal value [4].

The project is supervised by two researchers: A. Cwiszewski and P, Kokocki, closely
collaborating on the field of partial differential equations. One of tasks of this doctoral
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research project is to formally derive a geometric flow that approximates the contour
dynamics of patch-type solutions to the generalized SQG equation. Then our subsequent
problem is to identify and classify singularities developed by self-similar solutions of the
geometric flow. We are also interested in analyzing their geometrical structure by studying
singularities developed by the corresponding curvature flow. In particular, we aim to
characterize the mechanisms that lead to singularity formation and investigate conditions
under which such singularities emerge in finite time. This will enhance understanding of the
dynamics of generalized gSQG models by employing simplified geometric approximations.

Beyond patch evolution, we are also interested in other dynamical properties of gSQG
equations. By augmenting the equation with periodically varying forcing terms, we will
investigate the existence and bifurcations of time-periodic solutions other than the V-states
mentioned above. Our approach relies on the application of fixed-point methods and
topological tools, including Leray—Schauder degree theory [1], [2], the Banach fixed-point
theorem, and the Crandall-Rabinowitz bifurcation theorem.

Work plan

e Derive the geometric flow that formally approximates the contour dynamics of the
patch-type solutions for the gSQG equations and investigate its properties.

e Identify the form of self-similar solutions of the geometric flow and derive the
corresponding profile equations. Study the associated curvature flow to understand
the geometric structure of these solutions.

e Classify the types of finite-time singularities and characterize their geometric features.

e Apply topological tools to prove the existence of time-periodic solutions to forced
gSQG equations.
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Required initial knowledge and skills of the PhD candidate

Analytical thinking.
Willingness to self-study.
Understanding of mathematical analysis.

Basic knowledge of functional analysis, complex analysis, topology and partial
differential equations.

Expected development of the PhD candidate’s knowledge and skills

Advanced skills in functional analysis, partial differential equations, topology, with the
ability to apply these techniques in partial differential equations.

Understanding of the physical interpretation of the mathematical models under study
and their real-world applications.

An enhanced ability to conduct independent, original research, and formulate
mathematical hypotheses.

Communication and collaboration skills through presenting research results, writing
papers, and collaborating with the research environment.



